Phytochemistry, 1971, Vol. 10, p. 3315. Pergamon Press, Printed in England.

FLAVONES OF TRIFOLIUM PANNONICUM

G. SCHULTZ and IRMGARD BÖHRER* with technical assistance of SUSANNE EICHLER†

Institute of Animal Nutrition, Veterinary College, D-3 Hannover, Federal Republic of Germany

(Received 26 April 1971, in revised form 23 June 1971)

Abstract—Hispidulin-7-glycoside, luteolin-7-glucoside and luteolin-7-glucuronide were isolated from leaves of *Trifolium pannonicum*.

Plant. Trifolium pannonicum L. Source. Botanical Garden of the College, Hannover. Uses. Formerly as forage plant. Previous work on T. campestre.¹

Leaves. The MeOH extract of deep frozen leaves was separated first with light petroleum (b.p. 60-70°) and then with EtOAc. The substances of the latter phase were fractionated on polyamide Woelm with CHCl₃-MeOH-butanone-2 (CMB) in a gradient from 14:2:1 to 10:2:1, and subsequently by prep. PC with n-BuOH-HOAc-H₂O (4:1:2·2) (BAW).

Hispidulin-7-glycoside. Light yellow needles from MeOH-water. m.p. 226–235°. $\lambda_{\text{max}}^{\text{EiOH}}$ 275 and 332 nm; $\lambda_{\text{max}}^{\text{NaOAc}}$ 285 infl., 300 and 352 nm; $\lambda_{\text{max}}^{\text{NaOAc}}$ 275, 337 and 399 nm; $\lambda_{\text{max}}^{\text{NaOAc}}$ 275 and 335 nm; $\lambda_{\text{max}}^{\text{NaOEt}}$ 274 and 395 nm. PC: 15% HOAc, R_f 0.43; BAW, R_f 0.73. TLC on polyamide with CMB 9:4:2, R_f 0.8. Acid hydrolysis (32% HCl²) to hispidulin (UV, IR and co-chromatography with authentic substance³). Alkaline cleavage (10% KOH, N_2^4) of the aglycone to 4-hydroxyacetophenone and presumably iretol. 4-hydroxyacetophenone: $\lambda_{\text{max}}^{\text{EtOH}}$ 218 and 276 nm; $\lambda_{\text{max}}^{0\cdot1_n\text{HCl}}$ 275 nm; $\lambda_{\text{max}}^{0\cdot1_n\text{NaOH}}$ 217 and 325 nm; TLC: CMB 24:2:1, R_f 0,67 (compare 4-methoxyacetophenone from pectolinarigenin: $\lambda_{\text{max}}^{\text{NaOH}}$ 216 and 277 nm; TLC: CMB, R_f 0.94; also presumably iretol). Methylation of hispidulin with dimethylsulphate in acetone and $K_2\text{CO}_3$ yielded the tetramethyl ether (UV³, PC, TLC).

Luteolin-7- β -D-glucoside. UV, PC, TLC; acid hydrolysis to luteolin and glucose; aglycone-sugar ratio 1:0.8; cleavage with β -glucosidase.

Luteolin-7- β -D-glucuronide. UV, PC, TLC; cleavage with β -glucuronidase of Helix pomatia to luteolin.

Acknowledgements—The authors are indebted to Professor L. Hörhammer for samples of pectolinarigenin and linarigenin, to Professor W. Herz for a sample of hispidulin, to Professor L. Farkas for critical discussion and to the Kali-Chemie AG., Hannover, for the IR spectra. The technical assistance of Mrs. E. Bartjen is gratefully acknowledged. With financial support of the Deutsche Forschungsgemeinschaft.

Present addresses: * Chem.-pharm. Fabrik L. Heumann, D-85 Nürnberg, † Unilever Forschungs-aboratorium, D-2 Hamburg 50.

¹ H. WAGNER, L. HÖRHAMMER and W. KIRCHNER, Arch. Pharm. 293/65, 1053 (1960).

² K. W. MERZ and Y. H. Wu, Arch. Pharm. 274, 126 (1936).

³ W. HERZ and Y. SUMI, J. Org. Chem. 29, 3438 (1964).

⁴ J. J. CHIRIKDJIAN, E. JAAG and E. SPIEGL, Mh. Chem. 100, 1105 (1969).